I need to regularly import large (hundreds of thousands of lines) tsv files into multiple related SQL Server 2008 R2 tables.
The input file looks something like this (it's actually even more complex and the data is of a different nature, but what I have here is analogous):
January_1_Lunch.tsv
+-------+----------+-------------+---------+
| Diner | Beverage | Food | Dessert |
+-------+----------+-------------+---------+
| Nancy | coffee | salad_steak | pie |
| Joe | milk | soup_steak | cake |
| Pat | coffee | soup_tofu | pie |
+-------+----------+-------------+---------+
Notice that one column contains a character-delimited list that needs preprocessing to split it up.
The schema is highly normalized -- each record has multiple many-to-many foreign key relationships. Nothing too unusual here...
Meals
+----+-----------------+
| id | name |
+----+-----------------+
| 1 | January_1_Lunch |
+----+-----------------+
Beverages
+----+--------+
| id | name |
+----+--------+
| 1 | coffee |
| 2 | milk |
+----+--------+
Food
+----+-------+
| id | name |
+----+-------+
| 1 | salad |
| 2 | soup |
| 3 | steak |
| 4 | tofu |
+----+-------+
Desserts
+----+------+
| id | name |
+----+------+
| 1 | pie |
| 2 | cake |
+----+------+
Each input column is ultimately destined for a separate table.
This might seem an unnecessarily complex schema -- why not just have a single table that matches the input? But consider that a diner may come into the restaurant and order only a drink or a dessert, in which case there would be many null rows. Considering that this DB will ultimately store hundreds of millions of records, that seems like a poor use of storage. I also want to be able to generate reports for just beverages, just desserts, etc., and I figure those will perform much better with separate tables.
The orders are tracked in relationship tables like this:
BeverageOrders
+--------+---------+------------+
| mealId | dinerId | beverageId |
+--------+---------+------------+
| 1 | 1 | 1 |
| 1 | 2 | 2 |
| 1 | 3 | 1 |
+--------+---------+------------+
FoodOrders
+--------+---------+--------+
| mealId | dinerId | foodId |
+--------+---------+--------+
| 1 | 1 | 1 |
| 1 | 1 | 3 |
| 1 | 2 | 2 |
| 1 | 2 | 3 |
| 1 | 3 | 2 |
| 1 | 3 | 4 |
+--------+---------+--------+
DessertOrders
+--------+---------+-----------+
| mealId | dinerId | dessertId |
+--------+---------+-----------+
| 1 | 1 | 1 |
| 1 | 2 | 2 |
| 1 | 3 | 1 |
+--------+---------+-----------+
Note that there are more records for Food because the input contained those nasty little lists that were split into multiple records. This is another reason it helps to have separate tables.
So the question is, what's the most efficient way to get the data from the file into the schema you see above?
Approaches I've considered:
Are there any other possibilities out there?
The schema is still under development so I can revise it if that ends up being the sticking point.
You can import you file in the table of the following structure: Diner, Beverage, Food, Dessert, ID (identity, primary key NOT CLUSTERED - for performance issues).
After this simply add the following columns: Dinner_ID
, Beverage_ID
, Dessert_ID
and fill them according to your separate tables (it's simple to group each of the columns and to add the missing data to lookup tables as Beverages
, Desserts
, Meals
and, after this, to fix the imported table with the IDs for existent and newly added records).
The situation with Food
table is more complex because of ability to combine
the foods, but the same trick can be used: you can also add the data to your lookup table and, among this, store the combinations of foods in the additional temp table (with the unique ID) and separation on the single dishes.
When the parcing will be finished, you will have 3 temp tables:
From the above tables you can perform the insertion of the parsed values to either structure as you want.
In this case only 1 insert (bulk) will be done to the DB from the code side. All other data manipulations will be performed in the DB.